M1. (a) D-E
reason only scores if $D-E$ chosen
shallowest slope / gradient
accept smallest distance in biggest time accept longest time to travel the same distance accept the line is not as steepaccept it is a less steep line do not accept the line is not steep
(b) 80000

> allow 1 mark for correct substitution, ie 16000×5 provided no subsequent step shown
(c) (i) straight line starting at origin
accept within one small square of the origin
passing through $t=220$ and $d=500$
(i) 186
accept any value between 180 and 188 accept where their line intersects given graph line correctly read $\pm 4 \mathrm{~s}$

M2. (a) 4.2

> 2 marks for correct substitution and transformation, ie $1155 / 275$
> allow 1 mark for correct resultant force with a subsequent incorrect method, ie 1155
> allow 1 mark for an incorrect resultant force with a subsequent correct method, eg answers of 7.27 or 10.34 gain 1 mark
(b) (i) YES
marks are for the explanation
any two from:

- data (from police files) can be trusted
- data answers the question asked allow a conclusion can be made from the data
- large sample used

NO
any two from:

- the sample is not representative
- the sample size is too small
- accident files do not indicate age / experience of riders an answer YES and NO can score 1 mark from each set of mark points
(ii) more accidents with motorbikes up to 125 cc accept for $\mathbf{2}$ marks an answer in terms of number of under 125 cc to accidents ratio compared correctly with number of over 500 cc to accidents ratio
(c) (i) increases the time taken to stop accept increases collision time
decreases rate of change in momentum accept reduces acceleration / deceleration
accept $F=\frac{\Delta m v}{\Delta t}$
reduces momentum is insufficient
reduces the force (on the rider)
(ii) YES
any sensible reason, eg:
the mark is for the reason
- cannot put a price on life / injury
accept may save lives
- fewer (serious) injuries
accept reduces risk of injury
- reduces cost of health care / compensation

NO
any sensible suggestion, eg:

- money better spent on ...
needs to be specific
- total number of riders involved is small

M3. (a) 98
allow 1 mark for correct substitution ie $1 / 2 \times 0.16 \times 35 \times 35$ provided no subsequent step shown an answer of 98000 scores 0
(b) (i) 9.6
allow 1 mark for (change in velocity =) 60 ignore negative sign
(ii) 9600
ignore negative sign ortheir (b)(i) $\div 0.001$ correctly calculated, unless (b) (i) equals 0
(c) increases the time
to reduce/change momentum (to zero)
only scores if $1^{\text {tt }}$ mark scored
decreases rate of change of momentum scores both marks provided there are no contradictions
accept decreased acceleration/deceleration
equations on their own are insufficient

M4. (a) direction
(b) 54000
allow 1 mark for calculating and identifying momentum as 10 800
or
allow 1 mark for correct substitution into second equation
ie $\frac{1200 \times 9}{0.2}$
(c) increases the time taken (for head) to stop
accept increases impact time do not accept reference to slowing down time unless qualified
decreases rate of change in momentum
accept reduces acceleration / deceleration
accept increases the time taken to reduce momentum to zero is worth $\mathbf{2}$ marks
reduces momentum is insufficient
reduces the force (on the head)

M5. (a) (moving in) different / opposite directions accept one has positive momentum the other negative momentum accept they have different velocities
(b) (i) momentum before $=$ momentum afteror(total) momentum stays the same accept no momentum is lost accept no momentum is gained
(ii) 2.2
allow 1 mark for calculation of teenagers' momentum as22 (kgm/s) and
allow 1 mark for correct statement, eg momentumbefore = momentum after
or
allow 2 marks for a numerical expression of above, eg $55 \times 0.4=m \times 10$ or $0=(55 \times 0.4)+(m \times(-10))$
(c) any two from:

- work is done
- (against) friction
any reference to increasing friction negates this marking point
- (transforming) (kinetic) energy into heat

M6.(a) (i) momentum before $=$ momentum after accept no momentum is lost accept no momentum is gained or(total) momentum stays the same
$\mathrm{kg} \mathrm{m} / \mathrm{s}$
or
Ns
this may be given in words rather
than symbols
do not accept $n S$
(ii) 3 or their (b)(i) 3200 correctly calculated allow 1 mark for stating momentum before $=$ momentum after
or
clear attempt to use conservation of momentum
allow 1 mark for correct calculation of momentum before or after ie 12000 or 2400
or correct substitution using change in velocity = $8 \mathrm{~m} /$ sie $1200 \times$ 8

M7. (a) Zero $/ 0$

Accept none

Nothing is insufficent
velocity $/$ speed $=0$
accept it is not moving
paintball has not been fired is insufficient
(b) 0.27
allow 1 mark for correct substitution, ie $p=0.003(0) \times 90$
provided no subsequent step
(c) equal to
(a) momentum before (jumping) = momentum after (jumping)
accept momentum (of the skateboard and skateboarder) is conserved
before (jumping) momentum of skateboard and skateboarder is zero accept before (jumping) momentum of skateboard is zero accept before (jumping) total momentum is zero
after (jumping) skateboarder has momentum (forwards) so skateboard must have (equal) momentum (backwards)
answers only in terms of equal and opposite forces are insufficient
(b) 7

$$
\text { accept -7 for } 3 \text { marks }
$$

allow 2 marks for momentum of skateboarder equals 12.6
or
$0=42 \times 0.3+(1.8 \times-v)$
or
allow 1 mark for stating use of conservation of momentum

